A co-Frobenius Hopf algebra with a separable Galois extension is finite
نویسندگان
چکیده
منابع مشابه
On the Antipode of a Co-frobenius (co)quasitriangular Hopf Algebra
We extend to the co-Frobenius case a result of Drinfeld and Radford related to the fourth power of the antipode of a finite dimensional (co) quasitriangular Hopf algebra.
متن کاملOn the Galois Correspondence Theorem in Separable Hopf Galois Theory
In this paper we present a reformulation of the Galois correspondence theorem of Hopf Galois theory in terms of groups carrying farther the description of Greither and Pareigis. We prove that the class of Hopf Galois extensions for which the Galois correspondence is bijective is larger than the class of almost classically Galois extensions but not equal to the whole class. We show as well that ...
متن کاملHopf Algebra Extension of a Zamolochikov Algebra and Its Double
The particles with a scattering matrix R(x) are defined as operators Φi(z) satisfying the relation R j′,i′ i,j (x1/x2)Φi′(x1)Φj′ (x2) = Φi(x2)Φj(x1). The algebra generated by those operators is called a Zamolochikov algebra. We construct a new Hopf algebra by adding half of the FRTS construction of a quantum affine algebra with this R(x). Then we double it to obtain a new Hopf algebra such that...
متن کاملQuasi-co-frobenius Corings as Galois Comodules
We compare several quasi-Frobenius-type properties for corings that appeared recently in literature and provide several new characterizations for each of these properties. By applying the theory of Galois comodules with a firm coinvariant ring, we can characterize a locally quasi-Frobenius (quasi-co-Frobenius) coring as a locally projective generator in its category of comodules.
متن کاملHopf Galois Extension in Braided Tensor Categories
The relation between crossed product and H-Galois extension in braided tensor categories is established. It is shown that A = B#σH is a crossed product algebra if and only if the extension A/B is Galois, the inverse can of the canonical morphism can factors through object A⊗B A and A is isomorphic as left B-modules and right H-comodules to B⊗H in braided tensor categories. For the Yetter-Drinfe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2000
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-00-05437-x