A co-Frobenius Hopf algebra with a separable Galois extension is finite

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Antipode of a Co-frobenius (co)quasitriangular Hopf Algebra

We extend to the co-Frobenius case a result of Drinfeld and Radford related to the fourth power of the antipode of a finite dimensional (co) quasitriangular Hopf algebra.

متن کامل

On the Galois Correspondence Theorem in Separable Hopf Galois Theory

In this paper we present a reformulation of the Galois correspondence theorem of Hopf Galois theory in terms of groups carrying farther the description of Greither and Pareigis. We prove that the class of Hopf Galois extensions for which the Galois correspondence is bijective is larger than the class of almost classically Galois extensions but not equal to the whole class. We show as well that ...

متن کامل

Hopf Algebra Extension of a Zamolochikov Algebra and Its Double

The particles with a scattering matrix R(x) are defined as operators Φi(z) satisfying the relation R j′,i′ i,j (x1/x2)Φi′(x1)Φj′ (x2) = Φi(x2)Φj(x1). The algebra generated by those operators is called a Zamolochikov algebra. We construct a new Hopf algebra by adding half of the FRTS construction of a quantum affine algebra with this R(x). Then we double it to obtain a new Hopf algebra such that...

متن کامل

Quasi-co-frobenius Corings as Galois Comodules

We compare several quasi-Frobenius-type properties for corings that appeared recently in literature and provide several new characterizations for each of these properties. By applying the theory of Galois comodules with a firm coinvariant ring, we can characterize a locally quasi-Frobenius (quasi-co-Frobenius) coring as a locally projective generator in its category of comodules.

متن کامل

Hopf Galois Extension in Braided Tensor Categories

The relation between crossed product and H-Galois extension in braided tensor categories is established. It is shown that A = B#σH is a crossed product algebra if and only if the extension A/B is Galois, the inverse can of the canonical morphism can factors through object A⊗B A and A is isomorphic as left B-modules and right H-comodules to B⊗H in braided tensor categories. For the Yetter-Drinfe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2000

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-00-05437-x